
1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

1

A Proximity-aware Interest-clustered P2P File
Sharing System

Haiying Shen*, Senior Member, IEEE, Guoxin Liu, Student Member, IEEE , Lee Ward

Abstract—Efficient file query is important to the overall performance of peer-to-peer (P2P) file sharing systems. Clustering peers
by their common interests can significantly enhance the efficiency of file query. Clustering peers by their physical proximity can also
improve file query performance. However, few current works are able to cluster peers based on both peer interest and physical proximity.
Although structured P2Ps provide higher file query efficiency than unstructured P2Ps, it is difficult to realize it due to their strictly defined
topologies. In this work, we introduce a Proximity-Aware and Interest-clustered P2P file sharing System (PAIS) based on a structured
P2P, which forms physically-close nodes into a cluster and further groups physically-close and common-interest nodes into a sub-
cluster based on a hierarchical topology. PAIS uses an intelligent file replication algorithm to further enhance file query efficiency. It
creates replicas of files that are frequently requested by a group of physically close nodes in their location. Moreover, PAIS enhances
the intra-sub-cluster file searching through several approaches. First, it further classifies the interest of a sub-cluster to a number of
sub-interests, and clusters common-sub-interest nodes into a group for file sharing. Second, PAIS builds an overlay for each group
that connects lower capacity nodes to higher capacity nodes for distributed file querying while avoiding node overload. Third, to reduce
file searching delay, PAIS uses proactive file information collection so that a file requester can know if its requested file is in its nearby
nodes. Fourth, to reduce the overhead of the file information collection, PAIS uses bloom filter based file information collection and
corresponding distributed file searching. Fifth, to improve the file sharing efficiency, PAIS ranks the bloom filter results in order. Sixth,
considering that a recently visited file tends to be visited again, the bloom filter based approach is enhanced by only checking the newly
added bloom filter information to reduce file searching delay. Trace-driven experimental results from the real-world PlanetLab testbed
demonstrate that PAIS dramatically reduces overhead and enhances the efficiency of file sharing with and without churn. Further, the
experimental results show the high effectiveness of the intra-sub-cluster file searching approaches in improving file searching efficiency.

Index Terms—P2P networks, File sharing system, Proximity awareness, File replication, Bloom filter.

F

1 INTRODUCTION

Over the past few years, the immense popularity of the
Internet has produced a significant stimulus to P2P file
sharing systems. For example, BitTorrent [1] constitutes
roughly 35% of all traffic on the Internet. There are
two classes of P2P systems: unstructured and struc-
tured. Unstructured P2P networks such as Gnutella [2]
and Freenet [3] do not assign responsibility for data
to specific nodes. Nodes join and leave the network
according to some loose rules. Currently, unstructured
P2P networks’ file query method is based on either
flooding [2] where the query is propagated to all the
node’s neighbors, or random-walkers where the query is
forwarded to randomly chosen neighbors until the file is
found. However, flooding and random walkers cannot
guarantee data location. Structured P2P networks [4]–
[7], i.e. Distributed Hash Tables (DHTs), can overcome
the drawbacks with their features of higher efficiency,
scalability, and deterministic data location. They have
strictly controlled topologies, and their data placement
and lookup algorithms are precisely defined based on a
DHT data structure and consistent hashing function. The
node responsible for a key can always be found even if
the system is in a continuous state of change. Most of
the DHTs require O(log n) hops per lookup request with
O(log n) neighbors per node, where n is the number of
nodes in the system.

• * Corresponding Author. Email: shenh@clemson.edu; Phone: (864) 656
5931; Fax: (864) 656 5910.

• The first two authors are with the Department of Electrical and Computer
Engineering, Clemson University, Clemson, SC, 29634.
E-mail: {shenh, guoxinl}@clemson.edu.
Lee Ward is with the Sandia National Laboratories. E-mail: lee@sandia.gov

A key criterion to judge a P2P file sharing system
is its file location efficiency. To improve this efficiency,
numerous methods have been proposed. One method
uses a super-peer topology [8]–[10], which consists of
supernodes with fast connections and regular nodes
with slower connections. A supernode connects with
other supernodes and some regular nodes, and a regular
node connects with a supernode. In this super-peer
topology, the nodes at the center of the network are
faster and therefore produce a more reliable and stable
backbone. This allows more messages to be routed than
a slower backbone and, therefore, allows greater scalabil-
ity. Super-peer networks occupy the middle-ground be-
tween centralized and entirely symmetric P2P networks,
and have the potential to combine the benefits of both
centralized and distributed searches.

Another class of methods to improve file location ef-
ficiency is through a proximity-aware structure [9], [11],
[12]. A logical proximity abstraction derived from a P2P
system does not necessarily match the physical proxim-
ity information in reality. The shortest path according to
the routing protocol (i.e. the least hop count routing) is
not necessarily the shortest physical path. This mismatch
becomes a big obstacle for the deployment and perfor-
mance optimization of P2P file sharing systems. A P2P
system should utilize proximity information to reduce
file query overhead and improve its efficiency. In other
words, allocating or replicating a file to a node that is
physically closer to a requester can significantly help the
requester to retrieve the file efficiently. Proximity-aware
clustering can be used to group physically close peers to
effectively improve efficiency. The third class of methods
to improve file location efficiency is to cluster nodes with
similar interests [13]–[19], which reduce the file location
latency.

Although numerous proximity-based and interest-
based super-peer topologies have been proposed with

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

2

different features, few methods are able to cluster peers
according to both proximity and interest. In addition,
most of these methods are on unstructured P2P systems
that have no strict policy for topology construction. They
cannot be directly applied to general DHTs in spite of
their higher file location efficiency.

This paper presents a Proximity-Aware and Interest-
clustered P2P file sharing System (PAIS) on a structured
P2P system. It forms physically-close nodes into a clus-
ter and further groups physically-close and common-
interest nodes into a sub-cluster. It also places files with
the same interests together and make them accessible
through the DHT Lookup() routing function. More im-
portantly, it keeps all advantages of DHTs over unstruc-
tured P2Ps. Relying on DHT lookup policy rather than
broadcasting, the PAIS construction consumes much
less cost in mapping nodes to clusters and mapping
clusters to interest sub-clusters. PAIS uses an intelligent
file replication algorithm to further enhance file lookup
efficiency. It creates replicas of files that are frequently re-
quested by a group of physically close nodes in their lo-
cation. Moreover, PAIS enhances the intra-sub-cluster file
searching through several approaches. First, it further
classifies the interest of a sub-cluster to a number of sub-
interests, and clusters common-sub-interest nodes into a
group for file sharing. Second, PAIS builds an overlay
for each group that connects lower capacity nodes to
higher capacity nodes for distributed file querying while
avoiding node overload. Third, to reduce file searching
delay, PAIS uses proactive file information collection so
that a file requester can know if its requested file is in
its nearby nodes. Fourth, to reduce the overhead of the
file information collection, PAIS uses bloom filter based
file information collection and corresponding distributed
file searching. Fifth, to improve the file sharing efficiency,
PAIS ranks the bloom filter results in order. Sixth, con-
sidering that a recently visited file tends to be visited
again, the bloom filter based approach is enhanced by
only checking the newly added bloom filter information
to reduce file searching delay.

Note that although this work is for P2P file sharing
systems, the techniques proposed in this paper can ben-
efit many current applications such as content delivery
networks, P2P video-on-demand systems, and data shar-
ing in online social networks. Since the architecture of
PAIS is based on a structured P2P system, its architecture
cannot be used for unstructured P2P systems. However,
PAIS’s techniques for enhance efficiency of the intra-sub-
cluster file searching can be used for unstructured P2P
systems since nodes in a intra-sub-cluster are connected
in an unstructured manner. The remainder of this paper
is structured as follows. Section 2 presents a concise
review of representative approaches for file location effi-
ciency improvement in P2P systems. Section 3 describes
PAIS, focusing on its structure construction and file
searching algorithms. Section 4 describes the approaches
that improve PAIS’s intra-sub-cluster file searching. Sec-
tion 5 presents trace-driven experimental results to show
the effectiveness and efficiency of PAIS compared with
other systems in both static and dynamic environments.
Section 6 provides the conclusion for this paper.

2 RELATED WORK

We discuss the related works most relevant to PAIS in
three groups: super-peer topology, proximity-awareness,
and interest-based file sharing.

Super-peer topology. FastTrack [10] and Mor-
pheus [20] use super-peer topology. The super-peer net-
work in [8] is for efficient and scalable file consistency
maintenance in structured P2P systems. Our previous
work built a super-peer network for load balancing [9].
Garbacki et al. [21] proposed a self-organizing super-peer
network architecture that solves four issues in a fully
decentralized manner: how client peers are related to
super-peers, how super-peers locate files, how the load
is balanced among the super-peers, and how the system
deals with node failures. Mitra et al. [22] developed an
analytical framework, which explains the emergence of
super-peer networks on execution of the commercial P2P
bootstrapping protocols by incoming nodes. Chordella
[23] is a P2P system that is particularly designed for
heterogeneous environments such as wireless networks.
Sachez-Artigaz et al. [24] investigated the feasibility of
super-peer ratio maintenance, in which each peer can de-
cide to be a super-peer independently of each other. Li-
u et al. [25] proposed a hierarchical secure load balancing
scheme in a P2P cloud system. It first balances the load a-
mong supernodes, and then depends on each supernode
to balance the load among nodes under its management.
Garbacki et al. [26] proposed a self-organizing supernode
architecture to facilitate file querying. Each supernode
caches the files recently requested by its children, and
other peers send requests to the supernodes that can
solve most of their requests.

Proximity-awareness. Techniques to exploit topology
information in P2P overlay routing include geographic
layout, proximity routing, and proximity-neighbor
selection. Geographic layout method maps the overlay’s
logical ID space to the physical network so that
neighboring nodes in the ID space are also close in
the physical network. It is employed in topologically-
aware CAN [11]. In the proximity routing method, the
logical overlay is constructed without considering the
underlying physical topology. In a routing, the node
with the closest physical distance to the object key is
chosen among the next hop candidates in the routing
table. The entries of a routing table are selected based on
a proximity metric among all the nodes that satisfy the
constraint of the logical overlay (e.g., in Pastry [5], the
constraint is the node ID prefix). This method has been
adopted to Chord [4] and CAN [27]. Proximity neighbor
selection selects the routing table entries pointing to the
topologically nearest among all nodes with node ID in
the desired portion of the ID space.

Genaud et al. [28] proposed a P2P-based middleware
for locality-aware resource discovery. The works in [29]
and [30] measured the inter-ISP traffic in BitTorrent and
indicated the importance of locality-awareness traffic in
reducing the traffic over long-distance connections. Guo
et al. [31] examined traffic locality in PPLive and revealed
that PPLive achieves high ISP level traffic locality. Shen
and Hwang [32] proposed a locality-aware architec-
ture with resource clustering and discovery algorithms
for efficient and robust resource location in wide-area
distributed grid systems. Lehrieder et al. [33] studied
locality-awareness in scenarios with real-life, skewed
peer distributions and heterogeneous access bandwidths
of peers. Yang et al. [34] combined the structured and
unstructured overlays with proximity-awareness for P2P
networks to ensure the availability of searching results.
Gross et al. [35] proposed a BitTorrent-like downloading
scheme with locality-aware file searching and replication
in order to supply a robust and fast downloading.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

3

Manzillo et al. [36] proposed the collaborative locality-
aware overlay service, which reduces the transmit cost
of ISPs by switching to the source inside the same ISP
with the requester.

Interest-base file sharing. One category of interest-
base file sharing networks is called schema based net-
works [16]–[18]. They use explicit schemas to describe
peers’ contents based on semantic description and allow
the aggregation and integration of data from distributed
data sources. Hang et al. [14] proposed a method for
clustering peers that share similar properties together
and a new intelligent query routing strategy. Crespo
et al. [15] proposed a semantic overlay network (SON)
based on the semantic relations among peers. Ruffo and
Schifanella [37] studied the spontaneous communities of
users in P2P file sharing applications and found that a
family of structures show self-organized interest-based
clusters. The works in [13], [38] consider node interest
for publish and subscribe. Iamnitchi et al. [39] found the
small world pattern in the interest-sharing community
graphs, and suggested clustering common-interest nodes
to improve file searching efficiency. Some works leverage
the social network common-interest property for effi-
cient file searching. Cheng et al. [40] proposed NetTube
for P2P short video sharing. It clusters users with the
same interests together for efficient peer assisted video
delivering. Li et al. [41] proposed a P2P file sharing
system based on social networks, in which common-
multi-interest nodes are grouped into a cluster and are
connected based on social relationship. Lin et al. [42] pro-
posed a social based P2P assisted video sharing system
through friends and acquaintances. Li et al. [43] grouped
users by interests for efficient file querying and used
the relevant judgment of a file to a query to facilitate
subsequent same queries.

Liu et al. [44], [45] proposed online storage systems
with peer assistance. The works in [46], [47] employ
the Bloom filter technique for file searching. Despite the
efforts devoted to efficient file location in P2P systems,
there are few works that combine the super-peer topol-
ogy with both interest and proximity based clustering
methods. In addition, it is difficult to realize in DHTs
due to their strictly defined topology and data allocation
policy. This paper describes how PAIS tackles the chal-
lenge by taking advantage of the hierarchical structure
of a DHT.

3 PAIS: A PROXIMITY-AWARE INTEREST-
CLUSTERED P2P FILE SHARING SYSTEM

In our previous work [48], we studied a BitTorrent
user activity trace [49] to analyze the user file sharing
behaviors. We found that long distance file retrieval does
exist. Thus, we can cluster physically close nodes into
a cluster to enhance file sharing efficiency. Also, peers
tend to visit files in a few interests. Thus, we can further
cluster nodes that share an interest into a sub-cluster.
Finally, popular files in each interest are shared among
peers that are globally distributed. Thus, we can use
file replication between locations for popular files, and
use system-wide file searching for unpopular files. We
introduce the detailed design of PAIS below. It is suitable
for a file sharing system where files can be classified to
a number of interests and each interest can be classified
to a number of sub-interests.

b: (5,200)

a: (3,200)

c: (8,200)

d: (10,200)

1 2
3

9 10

(x, 50)

(x, 1200)

(x,1000)

(x, 800)

(x, 500)

(x, 2047)

(x,1800)
4

5 6

7 8

Book

MusicVideo

Movie

Fig. 1: The structure of PAIS.

3.1 PAIS Structure
PAIS is developed based on the Cycloid structured P2P
network [7]. Cycloid is a lookup efficient, constant-
degree overlay with n=d·2d nodes, where d is its dimen-
sion. It achieves a time complexity of O(d) per lookup re-
quest by using O(1) neighbors per node. Each Cycloid n-
ode is represented by a pair of indices (k, ad−1ad−2 . . . a0)
where k is a cyclic index and ad−1ad−2......a0 is a cubical
index. The cyclic index is an integer ranging from 0 to
d−1, and the cubical index is a binary number between
0 and 2d − 1. The nodes with the same cubical index
are ordered by their cyclic index mod d on a small
cycle, which we call a cluster. All clusters are ordered by
their cubical index mod 2d on a large cycle. The Cycloid
DHT assigns keys onto its ID space by a consistent
hashing function. For a given key, the cyclic index of
its mapped node is set to its hash value modulated by d
and the cubical index is set to the hash value divided
by d. A key will be assigned to a node whose ID is
closest to the key’s ID. Cycloid also has self-organization
mechanisms to deal with node joins, departures, and
failures. It has APIs, including Insert(key,object),
Lookup(key), Join() and Leave(). Cycloid’s rout-
ing algorithm involves three phases. A file request is
routed along the cluster of the requester, between clus-
ters, and along the cluster in the destination’s cluster.

A node’s interests are described by a set of attributes
with a globally known string description such as “im-
age” and “music”. The strategies that allow the descrip-
tion of the content in a peer with metadata [16]–[18] can
be used to derive the interests of each peer.

Taking advantage of the hierarchical structure of Cy-
cloid, PAIS gathers physically close nodes in one cluster
and further groups nodes in each cluster into sub-
clusters based on their interests. We define a sub-cluster
(SC) as a link structure within a network N given a set
of links from client (c) to a particular supernode server
(s). That is:

(SCl = ci, sj ∈ N |∃ a link(ci, sj , l)),
Each SCl supports functions: join(ci, l) that links
(ci, sj , l) are created between a server and a client and
leave(ci, l) where they are dropped.

The sub-cluster functions as a super-peer network that
has one server and a number of clients connected to
it. The servers are connected into a cluster in Cycloid.
All nodes in a sub-cluster have the same Cycloid ID.
Figure 1 illustrates the PAIS structure that shows clusters
of nodes with common interests. Physically close nodes
are in the same cluster, and common-interest nodes are
grouped into one sub-cluster. The physically close nodes
1− 6 are mapped to cluster 200. The nodes interested in
“book” are further grouped into sub-cluster a. All nodes
in sub-cluster a have ID (3, 200).

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

4

3.2 PAIS Construction and Maintenance
Node proximity representation. A landmarking method
can be used to represent node closeness on the network
by indices used in [9]. Landmark clustering has been
widely adopted to generate proximity information [11],
[50]. It is based on the intuition that nodes close to each
other are likely to have similar distances to a few select-
ed landmark nodes. We assume there are m landmark
nodes that are randomly scattered in the Internet. Each
node measures its physical distances to the m landmarks
and uses the vector of distances < d1, d2, ..., dm > as
its coordinate in Cartesian space. Two physically close
nodes will have similar vectors. We use space-filling
curves [51], such as the Hilbert curve [50], to map the
m-dimensional landmark vectors to real numbers, so the
closeness relationship among the nodes is preserved. We
call this number the Hilbert number of the node denoted
by H. The closeness of two nodes’ Hs indicates their
physical closeness on the Internet.

Node interest representation. Consistent hash func-
tions such as SHA-1 is widely used in DHT networks for
node or file ID due to its collision-resistant nature. When
using such a hash function, it is computationally infeasi-
ble to find two different messages that produce the same
message digest. The consistent hash function is effective
to cluster messages based on message difference.

Clustering physically close and common-interest n-
odes. Based on the Cycloid topology and ID determina-
tion, PAIS intelligently uses cubical indices to distinguish
nodes in different physical locations and uses cyclic
indices to further classify physically close nodes based
on their interests. Specifically, PAIS uses node i’s Hilbert
number, Hi, as its cubical index, and the consistent hash
value of node i’s interest mod d (Si%d) as its cyclic
index to generate node i’s ID denoted by (Si%d,Hi). If a
node has a number of interests, it generates a set of IDs
with different cyclic indices. Using this ID determination
method, the physically close nodes with the same H will
be in a cluster, and nodes with similar H will be in close
clusters in PAIS. Physically close nodes with the same
interest have the same ID, and they further constitute a
sub-cluster in a cluster.
Algorithm 1 Pseudo-code for node n joining in PAIS
containing node ṅ.
n.join (ṅ){
1: generate IDs: ID1=(S1,Hn), ... , IDm=(Sm,Hn)
2: for i = 0 to m do
3: //find the server closest to the IDi

4: si=ṅ.lookup server(IDi);
5: if n is a regular node then
6: //take si as its server
7: serverIDi

=si;
8: serverIDi

.join(n, l);
9: else

10: //n is a supernode
11: if si is a supernode then
12: si.addto backuplist(n);
13: else
14: //replace si because it is a temporary supdernode
15: n.clientlistIDi

=si.clientlistIDi
;

16: n.backpulistIDi
=si.backuplistIDi

;
17: si.remove clientlist(IDi);
18: n.join(si, l);
19: initialize routing table;
20: end if
21: end if
22: end for
23: }

Algorithm 2 Pseudo-code for node n leaving PAIS.
n.leave {
1: //assume node n has m interests
2: for i = 0 to m do
3: if it is the server in the sub-cluster of interest i then
4: if it has a supernode(s) in its backup list then
5: find supernode from its backuplist to replace itself
6: notify its clients about the server change
7: else
8: notify its clients to rejoin in the system
9: end if

10: execute leaving function in the Cycloid DHT
11: else
12: notify its server about its departure
13: end if
14: end for
15: }

PAIS construction and maintenance. When node i
joins the system, if there already exist nodes with IDs
equal to (Si%d,Hi), and node i is a regular node, it be-
comes a client in the sub-cluster. If node i is a supernode,
it becomes a backup for the server in the sub-cluster.
Before the server leaves, one of the backups replaces
the leaving server. If there is no node with IDs equal
to (Si%d,Hi) and node i is a supernode, it becomes the
server of the sub-cluster, and other newly-joined nodes
with IDs (Si%d,Hi) will connect to it. If node i is not
a supernode, it temporarily functions as the server until
there is a joining supernode to replace it.

The clusters in PAIS function as a super-peer network.
The server in a sub-cluster acts as a centralized server to
a subset of clients by maintaining an index of files in the
clients. Clients submit queries to their server and receive
file location results from it like a hybrid system. Servers
are also connected to each other as peers in a Cycloid.
Servers route messages over this overlay and submit and
answer queries on behalf of their clients and themselves.

To build each peer’s routing table in the Cycloid,
PAIS uses proximity-neighbor selection method. That
is, it selects the routing table entries pointing to the
nearest physical nodes among all nodes with IDs in the
desired portion of the ID space. As a result, in PAIS, the
logical proximity between neighbor abstractions derived
from the overlay approximately matches the physical
proximity information. Due to the uneven distribution of
nodes in physical space, nodes may not be distributed
with balance in the ID space of PAIS. The imbalance
of node distribution will not generate adverse effects
on file location efficiency in Cycloid [7]. Hence, it will
not adversely affect the file location efficiency in PAIS.
Algorithms 1 and 2 show the pseudocode for node join
and departure in PAIS, respectively.

As normal structured P2P systems, PAIS uses stabi-
lization to deal with node dynamism. Specifically, each
server probes its routing table entries and predecessor
periodically to make sure they are correct. If one of its
neighbors fails to respond during a certain time period
T , the server finds and connects to a new neighbor. In
a sub-cluster, a server selects a secondary server from
its backups that will replace it upon its departure or
failure. It also notifies all clients about the secondary
server. Before a server leaves, it requests the secondary
server to be the new server and notifies all clients. The
clients then connect to the new server. To handle the
influence of a server failure on its clients, PAIS uses
lazy-update. Specifically, each client probes its server
periodically. If a client c does not receive a reply from its

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

5

server s during T , c assumes that s fails, and connects to
the secondary server. To further improve the reliability,
multiple secondary servers can be used.

Performance analysis. Unlike other methods that use
broadcasting to cluster nodes, PAIS leverages the D-
HT ID determination to cluster nodes based on their
proximity and interest, thus reducing the overhead for
structure construction. With the assumption that there
are ns servers in PAIS, we analyze the overhead of node
dynamism in PAIS and achieve the following results.

Proposition 3.1: In PAIS, with high probability1, a node
join will incur overhead of O(log2 ns) messages.

Proof: When a node joins in PAIS, to find its closest
server for one of its interests, O(log ns) messages are
required. If the new node joins as a server, another
O(log2 ns) messages are required for neighbor update.
Thus, if the node has m interests, the number of mes-
sages needed is m(O(log ns) + αO(log2 ns))≈ O(log2 ns)
in which α is the probability that the new node joins as
a server.

Proposition 3.2: In PAIS, w.h.p., a node departure will
incur an overhead of O(log2 ns) messages, and a node
failure will incur an overhead of O(logNs) messages.

Proof: According to the PAIS node leaving algorithm,
a leaving client only needs O(1) message (i.e. notifying
its server). If a leaving server has a backup supernode,
it needs O(log2 ns) messages; otherwise, its clients need
to rejoin the system again. Each client joining requires
O(log ns) messages. Therefore, the average number of
messages caused by a node leaving is O(1) × β + (1 −
β)((1− γ)O(log2 ns)+ γ×O(logNs)) ≈ O(log2 ns) where
β is the percent of clients among all nodes, and γ is the
probability that a sever has no backup supernode. It is
easy to derive that a node failure incurs an overhead of
O(log ns) messages.

3.3 File Distribution
As physically close and common-interest nodes form a
sub-cluster, they can share files between each other so
that a node can retrieve its requested file in its interest
from a physically close node. For this purpose, the sub-
cluster server maintains the index of all files in its sub-
cluster for file sharing among nodes in its sub-cluster. A
node’s requested file may not exist in its sub-cluster. To
help nodes find files not existing in their sub-clusters, as
in traditional DHT networks, PAIS re-distributes all files
among nodes in the network for efficient global search.

In PAIS, file ID is determined using the same way in
Cycloid. That is, a file’s cyclic index is its key’s hash
value modulated by d and its cubical index is set to
the hash value divided by d, represented as (H%d,H/d),
where H is consistent hash value of its key. A file’s key
can be its name or a string describing its contents. The
file key must be consistent with the node interest. A
node stores its files to the system via Cycloid interface
Insert(fileID,file). According to Cycloid key as-
signment policy, each sub-cluster is responsible for the
files whose cyclic indices fall into the key space sector
it supervises. Thus, files with similar keys will be in the
same sub-cluster in a cluster. The supernode in a sub-
cluster further distributes files among its clients in bal-
ance. For example, in Figure 1, a file with key “book” has
ID (3, 200), then it will be stored in a node in sub-cluster

1. An event happens with high probability (w.h.p.) when it occurs
with probability 1−O(n−1

s).

a. In node joins and departures, the files are transferred
between nodes based on the key assignment policy.

When a node joins in the system, it needs to distribute
its files according to the file distribution protocol. These
files can be accessed by the Cycloid routing algorithm
through Lookup(fileID). A newly joined node also
needs to report its files corresponding to each of its
interests to the server of each interest sub-cluster in order
to enable other common-interest nodes to easily retrieve
their requested files from physically close nodes. If a
node leaves gracefully, it notifies other nodes to delete
its files by Lookup(fileID), and notifies its servers to
delete the index of its files. If a server notices that a client
failed, it removes the file index of the failed client.

In PAIS, if node i becomes very interested in file
f in its cluster, it joins the sub-cluster (Hf%d,Hi). If
node i is not interested in a file category any longer, it
departs the sub-cluster of the interest. By this way, PAIS
tunes to time-varying node interest and file popularity
dynamically.

File replication. PAIS relies on file replication to fur-
ther improve its file location efficiency. Basically, when
the request frequency of a file from a cluster of nodes
with H exceeds a predefined threshold t, the file owner
replicates a file in a node closest to (H%d,H) in that
cluster. Creating a replica for a group of nodes with high
accumulated visit rate on the file, so the file querying of
the nodes can be significantly expedited; meanwhile, the
nodes can take advantage of the file replicas.

Algorithm 3 Pseudo-code for looking up file f in PAIS.
n.lookup (key){
1: get file f ’s key;
2: get file f ’s ID (H%d,H/d);
3: if key ∈ interests then
4: send request to its server of sub-cluster H%d;
5: if receive positive response from the server then
6: exit;
7: end if
8: Lookup(H%d,Hn);
9: if receive negative response then

10: //use Cycloid routing algorithm
11: Lookup(H%d,H/d);
12: end if
13: end if
14: }

3.4 File Querying Algorithm
The file querying algorithm has several stages: intra-
cluster searching (consisting of intra-sub-cluster search-
ing and inter-sub-cluster searching) and inter-cluster
searching (i.e., DHT routing). If the intra-sub-cluster
searching fails, PAIS relies on inter-sub-cluster searching.
If the inter-sub-cluster searching fails, it will depend on
DHT routing for file searching.

When node i wants to retrieve a file, if the file’s key
is one of the requester’s interest attributes, it uses the
intra-sub-cluster searching. Node i sends the request to
its server in the sub-cluster of the interest. Recall that
the server maintains the index of all files in its sub-
cluster. Every time a server receives a request, it checks
if its sub-cluster has the requested file. If yes, the server
sends the file location to the requester directly. If the
file’s key is not one of the requester’s interest attributes,
node i checks the existence of the file or a replica of
the file in its cluster (i.e., inter-sub-cluster searching).
If there is a replica of the file, It should be stored in
a sub-cluster closest to ID (H%d,Hi). Therefore, the

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

6

requester sends a request with (H%d,Hi) as a target.
The request is forwarded along the servers in each sub-
cluster in the requester’s cluster. If there is no requested
file or replica of the requested file, the file request
routing is performed based on Cycloid routing algorithm
(i.e., inter-cluster searching). Then, node i calculates the
ID of the file (H%d,H/d) and sends out a message
of Lookup(fileID). This routing algorithm does not
lead to more overhead. Routing among physically close
nodes greatly improves file location efficiency.

For example, in Figure 1, different files are classified
into different sub-clusters based on their keys. When
a node queries for a file in “book”, it sends request
Lookup(3,200) to its server. The requester receives the
location of the file from the server if there is a requested
file in its sub-cluster. Otherwise, the request is routed
along its own cluster. Each server in the sub-cluster of
the cluster checks if there is a requested file. If there is
no requested file in the cluster, the request will be routed
based on Cycloid routing algorithm which will forward
the request to sub-cluster a. Then, the server of the sub-
cluster a replies to the requester of the location of the
file. Algorithm 3 shows the pseudocode of file lookup
in PAIS. Proposition 3.3 demonstrates the efficiency of
the file location in PAIS.

Proposition 3.3: W.h.p., the lookup path length for a
file query in PAIS is bounded by O(d) hops.

Proof: In PAIS, it takes a requester one hop to inquire
its server for a requested file, and takes O(d) to check
a possible replicated file. Using the Cycloid routing
algorithm, the path length is O(d); therefore, w.h.p., the
lookup path length for a query is bounded by O(d) hops.

4 INTRA-SUB-CLUSTER QUERYING
ENHANCEMENT

4.1 Sub-interest based File Querying
The cyclic index k indicates the interest of the nodes
inside a sub-cluster. Since k is bounded by d, d must be
no smaller than the number of interests in the system.
With fine-grained interest classification, d must be a
very large number. For example, d must be no smaller
than 366 for the BitTorrent application with 366 fine-
grained file interests [49]. However, a large d leads to
increased lookup path length and hence lower efficiency
in file querying based on Proposition 3.3. If PAIS has a
small d, it then has coarse-grained interest classification,
which leads to fewer sub-clusters in a cluster and much
more peers inside a sub-cluster. This will introduce a
long queuing delay and even single point of failure
due to supernode congestions, since nodes depend on
the supernode for intra-cluster searching. Thus, a small
d decreases the intra-cluster searching efficiency. As a
result, d represents a trade-off between the inter-cluster
and intra-cluster searching efficiency.

To achieve high efficiency in both inter-cluster and
intra-cluster searching, PAIS chooses a relative small d
with coarse-grained interest classification and uses an
additional method to improve the intra-cluster search-
ing. A small d improves the inter-cluster file searching
efficiency. Because a coarse-grained interest can be fur-
ther be classified to a number of fine-grained interests,
PAIS further clusters nodes inside a sub-cluster into
sub-interest groups. For example, interest “‘Music” can
be further classified into sub-interests “Classic”, “Jaz-
z”, “Pop” and so on. Using the supernode selection

Interest supernode

……

Sub‐cluster nodes

Music

Classic Pop Jazz Rap

……

Fig. 2: Sub-interest based node clustering in a sub-cluster.

methods, a supernode is selected to be responsible for
responding file queries inside each sub-interest group.
The sub-interest supernode maintains an index of files
residing in the nodes in the sub-interest group for file
querying. The sub-cluster supernode records each sub-
interest and its responsible supernode. As shown in Fig-
ure 2, inside a sub-cluster, nodes form a two layer tree.
Nodes in a sub-interest group connect to the sub-interest
supernode, and sub-interest supdernodes connect to the
sub-cluster supernode. When a node in a sub-interest
group A queries for a file in another sub-interest group
B, group A’s supernode will forward the request to the
sub-cluster supernode (i.e., tree root), which then will
forward the request to group B’s sub-interest supernode.
Then, group B’s sub-interest supernode forwards the
request to the node in its group that has the requested
file if it exists. By splitting the workload on a single
supernode among several supernodes of sub-interests,
the queuing delay and the congestion on the sub-cluster
supernode can be reduced. As a result, PAIS improves
the intra-cluster searching efficiency as well as inter-
cluster searching efficiency.

4.2 Distributed Intra-sub-cluster File Querying
There may be still tens of thousands of nodes inside a
sub-interest group that have the same sub-interest and
are in the same location [48]. Then, the file querying may
become inefficient due to the sub-interest supernode
overload or failure. Thus, though the sub-interest based
file querying improves querying efficiency, it is still not
sufficiently scalable when there are a very large num-
ber of nodes in a sub-interest group. We then propose
a distributed intra-sub-cluster file querying method in
order to further improve the file querying efficiency.
In this method, nodes inside a large sub-interest group
first search files among their neighbors in a distribut-
ed manner; if the search fails, the file requester then
forwards its request to the sub-interest supernode as
a complementary method. Below, we present how to
connect the nodes in a sub-interest group for distributed
file querying.

Nodes in a P2P system have heterogeneous bandwidth
capacities. If a node receives many file requests but it has
very limited bandwidth capacity, there will be a delay in
the request responses. Requesting a file from a node with
high bandwidth capacity can reduce file querying delay.
Thus, PAIS classifies nodes in a sub-interest group to
different classes based on the bandwidth capacity; nodes
in the same class have similar bandwidth capacity. Let
us use {C1, C2... } to represent the classes in descending
order of bandwidth capacity; nodes in class Cm have
higher capacity than those in class Cm+1. Then, a node
in class Cm+1 connects to nodes in class Cm, that is,
lower capacity nodes connect to higher capacity nodes.

PAIS needs to handle the node dynamism in building
an overlay for a sub-interest group. When a node belong-
ing to class Cm+1 joins in a sub-interest group, the sub-
interest supernode randomly selects M nodes in class
Cm. The random selection is to balance the searching

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

7

load from children among parent nodes. When a node
in C1 joins in the system, the supernode randomly selects
M other nodes in C1 to be its neighbors. When a non-
leaf node leaves, it needs to notify its neighbors and the
sub-interest supernode. The sub-interest supernode will
assign the children new neighbors.

In the file searching, nodes send their requests to their
parents with TTL (or neighbors in C1), which further
forward the request to their parents (or neighbors in
C1). Nodes asking their parents for files means higher
capacity nodes providing files to lower capacity nodes.
If a node has a higher capacity, it has more directly and
indirectly connected children in the overlay; that is, it is
likely to receive more requests. As a result, the file re-
sponding load is distributed among nodes based on their
capacity; higher capacity nodes received more requests.
If a node cannot find its requested file, it then broadcasts
its requests to its children, which further forward the
requests to their children. This process repeats until the
file is located or the search fails. This step helps find a
file, which is not in a higher capacity node but in a lower
capacity node. If the search fails, the node resorts to the
sub-interest supernode for the file.

4.3 Proactive File Information Collection based File
Querying
In the distributed file searching in a sub-interest overlay,
if a node proactively collects the information of files in
its neighborhood, it can find file holders quickly from the
collected information if they exist in the neighborhood.
Then, the file search delay can be reduced and file search
success rate can be enhanced. A simple method for
a node to represent its file information is to use the
names of all files held by it. In the file information
collection process, each node sends its file information
to its neighbors. To limit the file information collection
overhead, each node’s file information is forwarded for
only TTL hops. It means that a node can know the
file information of nodes within TTL hops. Thus, after
a node collects all file information from its neighbors
within TTL hops, it can check whether its requested files
exists within its TTL hops and which nodes have this
file. Then, in the file querying, after a node initiates a
request, it checks its file information to find file holders;
if it does not have the information of the queried file, it
resorts to the supernode. As the file information directly
contains file names and file holders, we refer to this file
querying method as FileName.

4.4 Bloom Filter based File Querying
In the FileName method, the information exchange be-
tween neighbors may introduce a high network over-
head. Also, the total size of the exchanged messages
increases exponentially as TTL increases. To constrain
the overhead in the file information collection, we fur-
ther propose a method called BloomFilter that uses the
counting bloom filter technique [52] to compress the
exchanged messages. As shown in Figure 3, a counting
bloom filter is represented by an array with each array
position denoting an index. The bloom filter method has
a number of hash functions. To feed a file to a bloom
filter, the file’s key is hashed by these hash functions.
Then, the courter in the array position corresponding
to each hash value is increased by one. The value in
the kth array position of the bloom filter represents the
number of files that have Hj(Fi) = k (j = 1, 2, ...), where

1 0 1 0 1 2 0 1 0 0 1 1

file i file j

Fig. 3: The counting bloom filter.

Hj() represents the jth hash function and Fi represents a
file fed into the bloom filter. For example, the counting
bloom filter in Figure 3 has four hash functions. After
hashing by the four hash functions, file i gains hash
values 1, 3, 6 and 8, and file j gains hash values 5,
6, 11 and 12. Thus, the counters in the corresponding
array positions are incremented by one. A newly added
or deleted file needs to be added into or deleted from
the bloom filter with its key information. We use v to
represent the bloom filter array (e.g., Figure 3). We use
cHj(Fi) to denote the counter value for hash value Hj(Fi)
in v. To decide whether a file Fi is in a bloom filter,
the hash values Hj(Fi) (j = 1, 2, ...,K) are calculated. If
{cHj(Fi) > 0, ∀1 ≤ j ≤ K}, the file is considered to be
in the bloom filter with probability ε. The expected false
positive rate is ε = 2−

m
n ·ln2, where m is the size of the

bloom filter array, and n is the number of files that have
fed into the bloom filter. We call this bloom filter is a
matched bloom filter of file Fi.

The file information of bloom filters, denoted by 6-
tuple representation f =<v,mf , p, u,N, ni>, needs to be
periodically exchanged among neighbors. mf denotes
the number of files that have been fed into the bloom
filter, p denotes the number of forwarding hops of the
bloom filter, u denotes the average upload bandwidth
of all nodes holding these fed files, N denotes the
number of these nodes and ni denotes the neighbor
that forwards f . When node ni initiates the bloom
filter information of its own files, it needs to calcu-
late the bloom filter of all files held by itself as v,
mf which equals the number of files held by itself,
and u which equals its own upload bandwidth. Then,
it sends information f =<v,mf , 1, u, 1, ni> to all its
neighbors. In order to further reduce the network load
of collecting file information, after a node receives the
bloom filters from all its neighbors, it combines those
with the same p and sends the combined bloom filter
with p ← p + 1 to its neighbors. The node excludes
the bloom filter from ni from the combined bloom filter
before sending it to ni. Each node’s initiated bloom
filter has a TTL forwarding hop limit; that is, a node
does not further forward bloom filters with p =TTL.
When nA receives the bloom filters from its neigh-
bors nB and nC : fB =<vB ,m(f,B), pB , uB , NB , nB> and
fC=<vC ,m(f,C), pC , uC , NC , nC> (pB = pC), it com-
bines them and the combination result is fB+C=<vB +
vC ,m(f,B) + m(f,C), pB + 1, (uB∗NB+uC∗NC)

NB+NC
, NB + NC , nA>.

The operation of vB + vC adds the two counters of each
array position to create a new bloom filter. For exam-
ple, vB =<7, 4, ..., 5>, and vC =<2, 4, ..., 1>, then vB +
vC =<9, 8, .., 6>.

Figure 4 shows an example of the bloom filter based
proactive file information collection. Let us assume that
the TTL equals to 2. We use a node’s fhs to represent the
bloom filter of files owned by node(s) s with h hops to
the node. In the figure, nA first receives the bloom filter
from nB , nC and nD, denoted as f1B , f1C and f1D. Also, nB
receives f1A, f1E and f1F . nB then combines these bloom
filters except f1A and sends it to nA, which is denoted by
f2E+F . nA also receives bloom filters from other nodes
two hops away, i.e., f2G+H and f2I+J . Therefore, after
the information collection, each node has a set of bloom

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

8

filters such as S = {f1B , f1E , f1C , f2I+J , f2E+F , f
2
G+H} in nA.

A

D C

B

F E

I

J

G

H

𝑓𝐵
1 𝑓𝐸+𝐹

2

𝑓𝐼+𝐽
2

𝑓𝐸
1 𝑓𝐶

1

𝑓𝐺+𝐻
2

Fig. 4: Bloom filter based file information collection.

A matched bloom filer of a file indicates that this file
is likely to have been fed into the bloom filter. The false
positive rate ε can be constrained to a small value if the
number of files fed into the bloom filter is limited. To
achieve a given ε, the expected maximum number of
files fed into the bloom filter is −m·ln 2

log ε . In file searching,
since a file requester can only know the bloom filter file
information of a group of nodes within TTL hops (e.g.,
f2E+F in Figure 4), the request needs to be forwarded
to the neighbors of the matched bloom filter, then the
neighbors of neighbors and so on until the requested
file is located or the querying TTL is expired. Specifically,
when a node initiates a file request, it searches its bloom
filters to find a matched bloom filter of the requested
file f ∈ S, and then sends the request to the node that
forwarded the matched bloom filter (e.g., ni in f). If
the request receiver holds the requested file, it returns
the file to the requester. Otherwise, it repeats the same
process. That is, it tries to find a matched bloom filter
f ′ ∈ S′ and then sends the request to n′i in f ′. Node
n′i continues the same process until the requested file
is found or the querying TTL expires. If a node cannot
find a matched bloom filter, it forwards the request to the
supernode. We use BloomFilter-noRank to represent this
searching method. For example, as shown in Figure 4,
when nA queries file Fi, nA first checks all f in its S
sequentially, and finds a matched bloom filter vE+F in
f2E+F . Then, nA forwards the request to the forwarder
of f2E+F , nB . After nB receives the query of Fi, it first
checks whether it has the file. If not, it checks all f inside
its S. nB finds a matched bloom filter of Fi, vE in f1E . It
then forwards the request to nE . If TTL = 0 and nE does
not have Fi, nE forwards the query to the supernode.

4.5 Enhanced Bloom Filter based File Querying

We further improve BloomFilter-noRank by ordering the
bloom filters in S in a certain order to find a matched
bloom filter so that it is more accurate and faster to
find file holders, and the located file holders have higher
upload bandwidth to provide files. We denote this en-
hanced method by BloomFilter. In a bloom filter result
f , a smaller mf leads to a smaller false positive rate in
file searching, hence higher file searching success rate. p
indicates the searching path length. u indicates the node
capability of serving the file requests. In order to enhance
the file searching success rate and searching efficiency,
after periodically receiving all bloom filter results from
its neighbors, nj ranks all bloom filter results by mf ,
p and u. Specifically, node nj sorts all its bloom filter
results firstly by mf in an ascending order, and then
sorts those with the same mf in an ascending order of p,
and finally sorts the bloom filter results in a descending
order of u. In file searching, a node checks the sorted f in
S to find matched bloom filter. For example, in Figure 4,

nA has sorted S as below:

S =< f1B =< vB , 10, 1, 10Mb/s, 1, nB >,
f1C =< vC , 10, 1, 5Mb/s, 1, nC >, ...,
f2I+J =< vI+J , 20, 2, 10Mb/s, 2, nD >, ... >

. (1)

nA searches a matched bloom filter in the top-down
order, and finds f1B . Then, it sends the request to nB
in f1B . Though f2I+J is also a matched bloom filter, it has
lower rank than f1B , so it is not identified.

We assume that a node shares its previously visit-
ed files with other nodes. Thus, highly popular files
have many replicas throughout the network, and the
distributed intra-sub-interest-group file searching is effi-
cient in searching highly popular files. However, it may
not be easy to search unpopular files within TTL hops
in a sub-interest overlay, since the replicas of such files
are sparsely distributed over the network. The number
of requests on files follows an exponential distribution
over time [48]. Thus, the requests on unpopular files
are limited, which can be handled by supernodes. Also,
most of the requests on popular files are generated
within a short period, which produces many file replicas
during this time period. After a node receives a file, it
enters this file into its own bloom filter and sends it to
its neighbors in the next time period. Since a recently
queried file is very likely to be queried again in a short
time period, when a node initiates or receives a request,
the requested file is very likely to be a newly added entry
from the bloom filter from its neighbors. Therefore, to
improve the searching accuracy, rather than checking an
entire bloom filter, the node can first check the different
part between the bloom filter in the previous time period
and that in the current time period. We use BloomFilter-
PriorityCheck to denote this method.

We use vT and v′T to denote the bloom filters having
the same forwarder ni and forwarding hops p received
from the previous time period and current time period,
respectively, by node nj . vT and v′T represent the same
group of nodes that p hops away from nj . We use
v−T = v′T−vT to represent the difference between v′T and
vT. For example, v′T = [7, 4, ..., 5], and vT = [2, 4, ..., 1],
then v−T = v′T − vT = [5, 0, .., 4]. The difference v−T is
the bloom filter for newly added (i.e., requested) files
among nodes p hops from node nj . As recently queried
files tend to be queried again and a smaller mf value
increases the searching accuracy, when nj queries a file,
it checks v−T first to improve the accuracy of searching.
Specifically, the bloom filters of v−T are ranked based on
mf , p and u in the same way as previously introduced.
The node checks the existence of the file in the sorted v−T
first. If a matched bloom filter is found, the file searching
is conducted in the same manner as in BloomFilter.
Otherwise, the node uses the BloomFilter method, i.e.,
checking v′T.

5 PERFORMANCE EVALUATION
We implemented a prototype of PAIS on PlanetLab [53],
a real-world distributed testbed, to measure the perfor-
mance of PAIS in comparison with other P2P file sharing
systems. We set the experiment environment according
to the study results [48] of a BitTorrent trace [49]. We ran-
domly selected 350 PlanetLab nodes all over the world.
Among these nodes, we randomly selected 30 nodes
as landmark nodes to calculate the Hilbert numbers of
nodes. We clustered all nodes into 169 different locations

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

9

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

C
D

F
 o

f
q

u
e

ri
e

s

Path length (hop)

Cycloid

TS_Net

PAIS

SWorld

(a) File search path length

0%

20%

40%

60%

80%

100%

Cycloid TS_Net PAIS SWorld

%
 o

f
q

u
e

ri
e

s
 r

e
s
o

lv
e

d

in
 e

a
c
h

 s
ta

g
e

Inter -
cluster

Intra-
cluster

Intra-
subclus
ter

(b) Breakdown of querying stages

1

10

100

1000

10000

100000

1 2 3 4 5 6

R
o

u
ti

n
g

 c
o

s
t

(k
m

)

Round index

Cycloid

TS_Net

PAIS

SWorld

(c) The routing distance

1

10

100

1000

10000

1 2 3 4 5 6

R
o

u
ti

n
g

 l
a

te
n

c
y

(m

s
)

Round index

Cycloid

TS_Net

PAIS

SWorld

(d) The routing latency

Fig. 5: The efficiency of file searching.

according to the closeness of their Hilbert numbers. We
used the 56,076 files in the BitTorrent trace [49]. The
number of interests in the system was set to 20, so we
also set the dimension of the Cycloid DHT to 20. We
simulated 100,000 peers by default in the experiments.
Each peer was randomly assigned to a location cluster
among all 169 clusters, and further randomly assigned to
a PlanetLab node within this location. According to [48],
a peer’s requests mainly focus on around 20% of all of
its interests. Thus, we randomly selected four interests
(20% of total 20 interests) for each peer as its interests.
The files are randomly assigned to a sub-cluster with
the files’ interest over the total 160 locations, and then
randomly assigned to nodes in the sub-cluster. 80% of all
queries of a requester target on files with owners within
the same location, among which 70% of its queries are
in the interests of the requester [39]. According to [48],
80% of all requests from a peer focus on its interests, and
each of other requests is in a randomly selected interest
outside of its interests. A request in an interest means
a request for a randomly selected file in this interest.
We also let each file have a copy in another peer in a
different location in order to test the proximity-aware
file searching performance.

Unless otherwise specified, there is only one group
inside each sub-cluster. Inside each sub-interest group,
the number of parents of a peer was set to M = 3. There
were two node classes (i.e., Class1 and Class2) based on
node bandwidth measured by the number of requests
that can be handled per second. We used a bounded
Pareto distribution [54] with shape 2 to generate node
bandwidth capacity. The lower bound was set to 10
and 100, and the upper bound was set to 1 and 10 for
Class1 and Class2, respectively. Each node is assigned
to Class1 with a probability 15%, and to Class2 with a
probability 85%. The TTL of intra-group searching was
set to 2, considering that a file can be discovered within 2
hops on average in a common-interest node cluster [39].
Unless otherwise specified, PAIS uses BloomFilter for the
intra-cluster searching. For the counting bloom filter [52],
we set the false positive rate to 1% and the expected
maximum number of inserted elements to 10,000.

Each experiment lasted six rounds. In each round,
peers generated queries in turn at the rate of six queries
per second in the system until each peer finished one
query. In order to show the effectiveness of PAIS’s
proximity/interest clustering and searching method, we
compared PAIS with SWorld [39], TS Net [34] and Cy-
cloid [7]. SWorld is an interest-aware clustering P2P sys-
tem, which groups common-interest peers into a cluster.
Inside a cluster, each peer randomly selects 20 peers as
neighbors in order to reach all peers in the cluster within
4 hops. For an intra-cluster query, each peer chooses
10 randomly selected neighbors to forward messages
with TTL=4. TS Net is a proximity-aware clustering

P2P system, which groups proximity-close peers into a
cluster. Peers inside a cluster form a three-ary proximity-
aware tree. In intra-cluster searching, a peer forwards
a message through the tree structure within 7 hops
in order to reach most other peers inside a cluster. In
order to make these systems comparable to PAIS and
guarantee a successful response to each query, we mod-
ified SWorld and TS Net by using PAIS’s DHT overlay
for file searching whenever the intra-cluster searching
fails. The DHT consists of supernodes and files are re-
distributed among the supernodes and can be located
by the Lookup() function. In SWorld and TS Net, each
cluster randomly selects 169 and 20 peers, respectively,
to form the Cycloid overlay. We use Cycloid to denote
the system without clustering, which always uses the
DHT searching function Lookup() to find files.

5.1 The Efficiency of File Searching
Figure 5(a) shows the CDF of file queries versus query
path length in hops of all systems. It shows that PAIS
has more queries resolved within a small number of
hops than other systems. It has 31%, 46% and 85% more
queries resolved within four hops than SWorld, TS Net
and Cycloid, respectively. This is because PAIS’s si-
multaneous proximity/interest-aware clustering enables
nodes to find their interested files in proximity-close
nodes in intra-cluster searching, which reduces the inter-
cluster queries. Our experimental results show that the
percent of requests resolved in intra-cluster searching
are 81%, 73%, 57% and 0% in PAIS, TS Net, SWorld
and Cycloid, respectively. More inter-cluster queries lead
to long query path lengths. PAIS also produces shorter
query path lengths than other systems in intra-cluster
searching. By clustering common-interest nodes, SWorld
enables nodes to find their interested file in their cluster.
However, the file providers may be unreachable from
requesters within TTL. Therefore, queries in PAIS have
shorter query paths than SWorld. Because PAIS further
considers interest-based clustering compared to TS Net,
nodes can more quickly find interested files. Thus, PAIS
leads to shorter path lengths than TS Net. Cycloid only
depends on DHT routing to find files without consider-
ing proximity and interests. DHT lookup path length is
much longer than the path length of intra-cluster search-
ing in the other systems. Therefore, Cycloid produces
longer path lengths than other systems. TS Net has more
queries resolved within 8 and fewer queries resolved
within 4 than SWorld. The intra-cluster forwarding TTL
is 7 and 4 in TS Net and SWorld, respectively. Therefore,
TS Net resolves more queries within 8 hops. The smaller
percentage of queries within 4 hops in TS Net than
in SWorld is caused by TS Net’s smaller number of
neighbors per node in a cluster for query forwarding
than SWorld, which generates fewer queries resolved
within short path lengths. This figure shows that PAIS

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

10

0%

20%

40%

60%

80%

100%

10 100 1000 10000C
D

F
 o

f
s
e

rv
e

r-
c
li

e
n

t
p

a
ir

s

Transmission distance (km)

Cycloid
TS_Net
PAIS
SWorld

Fig. 6: CDF of server-client
pair distance.

0

5000

10000

15000

1 2 3 4 5 6

N
u

m
b

e
r

o
f

re
p

li
c
a

s

Round index

PAIS /2 PAIS /3

PAIS /5 PAIS

(a) Number of replicas

0

20

40

60

80

100

1 2 3 4 5 6

R
e

p
li

c
a

ti
o

n
 c

o
s
t

(1
0

6
k

m
)

Round index

PAIS /2 PAIS /3

PAIS /5 PAIS

(b) Replication cost

5

7

9

11

13

15

1 2 3 4 5 6A
v
e

.
p

a
th

 l
e

n
g

th
 (

h
o

p
)

Round index

PAIS /2 PAIS /3

PAIS /5 PAIS

(c) Path length

Fig. 7: The effectiveness of the file replication algorithm on file searching efficiency.

generates shorter path lengths than other systems, which
indicates its high searching efficiency.

Figure 5(b) shows the percentage of queries resolved
in each stage of searching including inter-cluster, intra-
cluster and intra-sub-cluster searching in different sys-
tems. The inter-cluster stage means the Lookup()
searching in the Cycloid DHT overlay. Cycloid only has
inter-cluster searching, and TS Net and SWorld do not
have intra-sub-cluster searching. From the figure, we
find that the percentage of requests resolved inside a
cluster follows PAIS>TS Net>SWorld>Cycloid=0 due
to the same reasons as in Figure 5(a). We also find
that most of the queries resolved inside a cluster are
resolved within sub-cluster in PAIS. That is because
most of the queries of a peer focus on its interests.
This figure indicates the effectiveness of our intra-sub-
cluster and intra-cluster searching, and it also verifies
the effectiveness of proximity/interest-aware clustering
in PAIS.

Figure 5(c) and Figure 5(d) show the median, the
5th percentile and 95th percentile of the routing cost
measured by routing distance in km, and the latency
of a request, respectively, in each round. We see that the
median of both cost and latency of all systems follow
PAIS<TS Net<SWorld<Cycloid. Due to the same rea-
sons as in Figure 5(a), PAIS has the smallest cost and la-
tency among all systems, and Cycloid has the largest cost
and latency. Because of the proximity-aware clustering in
TS Net, its intra-cluster searching is between physically
close peers, which introduces smaller path distance and
latency than those in SWorld. We can also see that the
5th percentiles of routing cost and latency of Cycloid are
much larger than those in other systems. This is because
Cycloid only uses DHT routing without proximity or
interest consideration, which generates long routing cost
and latency, while in other systems, intra-cluster search-
ing can efficiently resolve a large percentage of queries
in small path lengths. These experimental results indi-
cate the effectiveness of the proximity/interest clustering
method in PAIS, which enables it to resolve queries with
smaller cost and latency than other systems.

Figure 6 shows the CDF of server-client pairs over
distance, which indicates the file transmission load from
the server to the client hence the file sharing efficiency.
The figure indicates that the expected distance of server-
client pairs follows Cycloid>SWorld>TS Net>PAIS.
Both PAIS and TS Net cluster peers with proximity-
awareness and resolve most of queries within clusters.
Thus, they can resolve more queries within shorter
distances than other two systems without proximity-
awareness. Compared to TS Net, PAIS resolves more
queries in intra-cluster searching. PAIS’s proximi-
ty/interest clustering helps nodes quickly find their
interested file in short distances. With only proximity-
aware clustering, TS Net allows nodes to search files

within short distances but cannot guarantee fast file lo-
cation. Therefore, PAIS generates a shorter server-client
distance than TS Net. In SWorld, a requester forwards
its query to its neighbors, thus the file holders nearby
respond the requester more quickly than the file holders
far away. As a result, SWorld can find the files near-
by with a higher probability than Cycloid, leading to
shorter client-server distances than Cycloid. This figure
indicates PAIS’s higher file searching efficiency as it has
shorter server-client distances than other systems.

5.2 Performance of File Replication
In this experiment, when peers in one location request
a file not existing in the location for at least t times,
the file is replicated in their location. In the figures,
PAIS/x denotes PAIS with the replication algorithm
when t = x. In this experiment, there was a single replica
for each file initially. Figure 7(a) shows the number of
created replicas of PAIS with and without the replica-
tion algorithm with varying t values over the contin-
uous six rounds. It shows that the number of created
replicas follows PAIS<PAIS/5<PAIS/3<PAIS/2. This is
because with the same file requests, a smaller t leads
to more generated replicas. PAIS/2 has created nearly
twice of the number of replicas of PAIS/3. Figure 7(b)
demonstrates the replication cost measured by the sum
of the distances between each pair of the original file
owner and replica node. The replication cost also follows
PAIS/5>PAIS/3>PAIS/2>PAIS, and the cost of PAIS/2
is about twice of PAIS/3 due to the same reason as in
Figure 7(a). Both figures show that more replicas are
created and hence more replication cost is generated
as the experiment round increases because more file
requests are generated.

Figure 7(c) shows the average path length in each
round of PAIS without and with the replication algo-
rithm with varying t values over the continuous six
rounds. First, we see that PAIS/x (x=2, 3, 5) gener-
ates shorter path lengths than PAIS, which shows the
benefit of replicating frequently-visited files for nodes
in a location. Second, we notice that the result follows
PAIS/5>PAIS/3>PAIS/2, i.e., the path length decreases
as the threshold t decreases. This is because a lower
threshold leads to more replicas as shown in Figure 7(a),
enabling nodes to find their requested files in their own
locations. Third, we see that the path length decreases
as time goes on. As more and more requests are sent out
from nodes in a location, more replicas of different files
are generated in their location, enabling nodes to retrieve
files within one hop. We also find that the path length
of PAIS/3 is slightly larger than PAIS/2. Considering
the much larger replication cost and consistency main-
tenance cost of PAIS/2 over PAIS/3, t = 3 is a better
choice to break the tie between replication/maintenance
cost and query efficiency.

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

11

0

20

40

60

80

100

Cycloid TS_Net PAIS SWorld

N
u

m
.

o
f

m
e

s
s
a

g
e

s

p
e

r
s
u

p
e

rn
o

d
e

 Querying Response

(a) Avg. number of messages
through a supernode

1E+0

1E+2

1E+4

1E+6

1E+8

Cycloid TS_Net PAIS SWorld

S
y
s
te

m
 o

v
e

r
h

e
a

d

(m
e

s
s
a

g
e

s
)

Maintenance Inter-cluster Intra-cluster Total

(b) Number of communication
messages

Fig. 8: The overhead of file searching.

5.3 The Overhead of File Searching
Figure 8(a) shows the average number of query mes-
sages traveling through supernodes per supernode in all
six rounds, which reflects the load of supernodes in file
querying. Cycloid does not use supernodes and it forms
all nodes into a DHT, so we measured metrics on all
nodes as its results. In PAIS, the supernodes handle the
intra-interest group, intra-sub-cluster, inter-sub-cluster
and DHT searching, while in other systems, the supern-
odes only handle the DHT searching. We measured the
number of query messages forwarded to supernodes,
and the response messages from supernodes. We see that
the number of query messages per supernode follows
Cycloid>SWorld>TS Net>PAIS. Part of the reason for
this result is that the percentage of queries resolved by
DHT routing follows Cycloid>SWorld>TS Net>PAIS as
shown in Figure 5(b), and the Lookup() routing func-
tion introduces many routing messages. In PAIS, many
queries are resolved by intra-cluster searching, which
also introduces some query messages. However, such a
query only produces one query message, which is much
smaller than one DHT routing query. Therefore, PAIS
still generates the smallest number of querying mes-
sages per supernode. The number of response messages
per supernode follows Cycloid>PAIS>SWorld>TS Net.
PAIS has a larger number of response messages than
TS Net and SWorld, because it depends on supern-
odes to respond the requests after intra-interest group
searching failures. Most queries are resolved in intra-
cluster searching, so supernodes respond most queries.
All queries are responded by supernodes by Cycloid,
which leads to larger average response messages than
PAIS. The number of response messages of SWorld
and TS Net follows the same order as the number
of querying messages due to the same reason. Since
a file query produces many searching messages but
one response message if it is successfully resolved, the
total number of messages per supernode still follows
Cycloid>SWorld>TS Net>PAIS. These experimental re-
sults indicate that PAIS has better performance than
other systems in avoiding overloaded supernodes.

Figure 8(b) shows the number of communica-
tion messages for structure maintenance, inter-cluster
querying and intra-cluster querying, respectively, and
the total number of these messages in each sys-
tem in all six rounds. The experimental results show
that the number of maintenance messages follows
SWorld>Cycloid>PAIS>TS Net though it is not obvious
in the figure. SWorld generates the largest number of
maintenance messages, since each peer needs to main-
tain the connections to a large number of peers (i.e.,
20) in a cluster. Cycloid generates a larger number of
maintenance messages, because its larger Cycloid over-
lay with all peers participating in the DHT introduces

much more messages to maintain the routing tables.
PAIS has a smaller number of maintenance messages
than Cycloid, because it needs to maintain a smaller
Cycloid overlay, where each node is the supernode in
charging of each sub-cluster. Also, due to its fine-grained
interest and proximity clustering, each node maintains
fewer neighbors in a sub-cluster than in a cluster in
SWorld. TS Net has the smallest number of maintenance
messages, because each node only needs to maintain the
connections to its 3 children and 1 parent inside its clus-
ter. The order of the number of inter-cluster query mes-
sages of all systems is the same as that in Figure 8(a) due
to the same reasons. The number of intra-cluster mes-
sages follows TS Net>SWorld>PAIS. PAIS has much
fewer intra-cluster query messages because of its limited
hops in intra-cluster searching. TS Net produces a larger
number of intra-cluster messages due to its much longer
path length (i.e., 7) in intra-cluster searching. Also, due
to the much larger number of intra-cluster messages
of SWorld and TS Net, the total number of messages
follows TS Net>SWorld>Cycloid>PAIS. The figure in-
dicates that PAIS introduces lighter overhead than other
systems while achieves high file searching and sharing
efficiency.

5.4 Performance of Dynamism Resilience
This experiment tests the performance of the dynamism-
resilience of all systems. In this experiment, the peer
failure rate followed a Poisson distribution [55], with
the mean rate varying from 1% to 3.5% node failures
per second. We measured the average performance of
all six rounds. We used the average path length of all
successful resolved queries as its path length, and used
the maximum path length of DHT routing as the path
length for a failed query. Figure 9(a) shows the average
path length in hops of different systems with different
mean node failure rates. It shows that the average path
length follows Cycloid>SWorld≈TS Net>PAIS due to
the same reason as in Figure 5(a). TS Net generates
shorter path lengths than SWorld when the failure rate
is low, because TS Net resolves more queries inside a
cluster than SWorld as shown in Figure 5(b), and the
intra-cluster searching introduces much smaller expect-
ed path length than inter-cluster searching. The fig-
ure also shows that the average path length increas-
es as the node failure rate increases for all method-
s. More peer failures lead to more querying failures,
hence longer path lengths. From the figure, we can also
see that the path length increase rate of all methods
follows Cycloid>TS Net>SWorld>PAIS. In the intra-
cluster searching in PAIS and SWorld, when a node
forwards a request to another node, if the receiver fails,
the forwarder can choose another node to forward the
request. TS Net’s single path leads to high failure rate,
and then it resorts to DHT routing, which leads to
longer path lengths. In Cycloid, a DHT routing failure
leads to more routing hops. Therefore, PAIS and SWorld
generate smaller increase of path length than TS Net
and Cycloid. PAIS has a larger percentage of queries
resolved inside a cluster than SWorld, and the intra-
cluster searching is much more dynamism-resilient than
the inter-cluster searching. Thus, PAIS has a smaller in-
crease rate than SWorld. TS Net’s intra-cluster searching
leads to shorter path lengths than the DHT routing path
lengths. Thus, TS Net has a smaller path length increase
rate than Cycloid. The figure indicates that PAIS can
still generate the shortest query path length in node

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

12

2

7

12

17

22

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%A
vg

.
p

a
th

 l
e

n
g

th
 (h

o
p

)

Mean node join/leave rate

Cycloid TS_Net

PAIS SWorld

(a) Avg. path length

0.E+0

2.E+4

4.E+4

6.E+4

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

A
vg

.
d

is
ta

n
ce

 (
k

m
)

Mean node join/leave rate

Cycloid TS_Net
PAIS SWorld

(b) Avg. routing distance

0

1000

2000

3000

4000

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

A
vg

.
la

te
n

cy
 (

m
s)

Mean node failure rate

Cycloid TS_Net
PAIS SWorld

(c) Avg. routing latency

Fig. 9: File searching performance in node dynamism.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1000 2000 3000 4000 5000

N
e

tw
o

rk
 l
o

a
d

 (
M

B
)

Sub-interest group size

BloomFilter FileName

Supernode

(a) Network load of proactive file
information collection

80%

85%

90%

95%

100%

1000 2000 3000 4000 5000

S
e

a
rc

h
 s

u
c
c
e

s
s
 r

a
te

Sub-interest group size

BloomFilter
BloomFilter-noRank
FileName
Supernode

(b) Query success rate

1

2

3

1000 2000 3000 4000 5000

A
v
g

.
p

a
th

 l
e

n
g

th
 o

f
in

tr
a

-g
ro

u
p

 q
u

e
ri

e
s

Sub-interest group size

BloomFilter

BloomFilter-noRank

(c) Query path length

0%

20%

40%

60%

80%

100%

1000 2000 3000 4000 5000

S
e

a
rc

h
 s

u
c
c
e

s
s
 r

a
te

Sub-interest group size

BloomFilter (N=1E4)

BloomFilter-PriorityCheck (N=1E4)
BloomFilter (N=1E3)
BloomFilter-PriorityCheck (N=1E3)

(d) Query success rate of popular
files

Fig. 10: Intra-sub-cluster file searching performance.
dynamism and the node dynamism has the smallest
effect on PAIS’s querying efficiency, which confirms its
higher dynamism-resilience than other systems.

Figure 9(b) and Figure 9(c) show the average rout-
ing distance and latency of all systems, respectively.
The figures show that the average routing distance
and latency of all systems follow the same order as
those in Figure 5(c) and Figure 5(d), respectively, due
to the same reasons. The figures also show that all
systems’ routing distance and latency increase as the
node failure rate increases, and the increase rate follows
Cycloid>TS Net>SWorld>PAIS due to the same reason
as in Figure 9(a).

5.5 The Efficiency of Intra-sub-cluster Querying
In this experiment, we randomly selected one location
out of all 169 locations, and used all PlanetLab nodes in
this location to simulate a sub-interest group inside PAIS,
where the number of peers was increased from 1,000 to
5,000 by 1,000 at each step. We randomly selected files
to produce replicas and the number of replicas was 40
times of the number of peers inside this group. The TTL
for file querying and information forwarding was set
to 3. All peers inside the group only query files within
3 hops in order to test the file searching success rate
solely determined by the false positive rate of the bloom
filter method. We use Supernode to denote the method, in
which all group peers forward the information of their
owned files periodically to the supernode, and peers
send file requests to the supernode. We measured the
size of the transmitted information for proactive file
information collection as network load.

Figure 10(a) shows the average network load per node
in one round. In Supernode, we measured the size of
all file information transmitted to the supernodes as the
result. The figure shows that the average network load
follows BloomFilter<Supernode<FileName. By forwarding
the file information to all nodes within 3 hops, FileName
generates higher network load than Supernode. Bloom-
Filter generates much lower network load than others.
BloomFilter only needs to transmit the bloom filters by
compressing the file information from many nodes into

a single array of integers, which has a much smaller
size than the combination of all file information. The
figure indicates that the bloom filter based information
collection is effective in reducing the network load.

Figure 10(b) shows the query success rate of intra-
group searching without relying on the supernode in all
methods. The figure shows that the success rate follows
FileName=Supernode>BloomFilter>BloomFilter-noRank.
Supernode has the file information of all peers in a group,
so it generates 100% query success rate. In FileName,
each node has each file’s information associated with
the file holders within TTL hops. Thus, it can definitely
find the requested files within TTL hops. However,
they introduce larger network load than BloomFilter as
shown in Figure 10(a). BloomFilter has a higher success
rate than BloomFilter-noRank, because its identified
matched bloom filter has a smaller false positive rate.
The figure indicates that BloomFilter is effective in
searching files with a high query success rate while
reduces network load. We also see that the success rates
of both BloomFilter and BloomFilter-noRank decrease as
the sub-interest group size increases. This is because
more nodes inside a group mean more different files
within TTL hops of a node, which leads to a larger false
positive rate of the bloom filters in file searching.

Figure 10(c) shows the average query path length of
BloomFilter and BloomFilter-noRank inside the sub-interest
group. Since Supernode does not have distributed intra-
group file searching and FileName can always find the
file holder, we did not measure their performance. From
the figure, we can see that the average query path
length of BloomFilter is shorter than that of BloomFilter-
noRank. That is because BloomFilter gives the bloom
filters with shorter path length a higher rank in choosing
a matched bloom filter, while BloomFilter does not. This
figure confirms the effectiveness of the enhanced bloom
filter based file querying.

We use N to denote the maximum number of files
inserted into the bloom filter in order to achieve ε. In
this experiment, the percent of popular files was set to
1/10 of all files. All peers requested a randomly selected
popular file in each round. As shown in Figure 10(d),

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

13

20%

30%

40%

50%

60%

70%

1 2 3 4 5

S
e

a
rc

h
 s

u
c
c
e

s
s
 r

a
t

Number of groups

BloomFilter
BloomFilter-noRank

(a) Searching success rate with sub-
interest clustering

0%

200%

400%

600%

800%

1000 2000 3000 4000 5000

N
o

d
e

 u
ti

li
z
a

ti
o

n

Sub-interest group size

(w/) Overlay (w/o) Overlay

(b) Node utilization with node ca-
pacity classification

Fig. 11: Performance of intra-sub-cluster overlay.

we can see for both N = 1, 000 and N = 10, 000,
BloomFilter-PriorityCheck produces a large query success
rate than BloomFilter. The difference of two consecutive
bloom filters only involves the popular files which are
newly created. By checking this difference, BloomFilter-
PriorityCheck produces a smaller false positive rate due to
the smaller number of files involving in the bloom filter.
The figure indicates that the effectiveness of BloomFilter-
PriorityCheck in enhancing the success rate of BloomFilter
in searching popular files.

5.6 Performance of Intra-sub-cluster Overlay

In this experiment, we used the same experimental
environment as in Section 5.5, with the number of peers
inside a sub-cluster set to 5000. To measure the perfor-
mance of effectiveness of the sub-interest clustering in
Section 4.1, we increased the number of groups from 1
to 5. Each peer randomly joined a group, and randomly
requested files owned by the users inside the same
group. Figure 11(a) shows the intra-group search success
rate of BloomFilter and BloomFilter-noRank versus the
number of groups. From the figure, we can see that
the search success rate of BloomFilter is much larger
than BloomFilter-noRank as shown in Figure 10(b), due
to the same reason. We can also see that the search
success rate of both methods increase as the number
of groups increases. With more groups (i.e., more fine-
grained interest classification), there are fewer nodes as
well as fewer files inside a group, which leads to a
higher percentage of requests resolved in intra-group
searching. This figure indicates that the sub-interest clus-
tering improves the effectiveness of the intra-sub-cluster
searching by increasing the search success rate.

To measure the performance of effectiveness of over-
lay construction inside a group based on node capacity
in Section 4.2, we measured the node utilization by
ut = W/C, where W is the total number of requests
handled in a second and C is the node capacity. We used
(w/)Overlay to denote our node capacity-aware overlay,
and (w/o)Overlay to denote the same method to build the
overlay except that Class1 and Class2 randomly selected
nodes. Figure 11(b) shows the 5th percentile, median
and the 95th percentile of all nodes’ 99th utilization
during the experiment. From the figure, we can see that
(w/o)Overlay has a much larger 95th percentile, and a
lower 5th percentile results. This is because the nodes in
Class1 handle most queries, and the workload may be
too heavy for a low-capacity node. High capacity nodes
in Class2 may have few requests, which fail to fully
utilize their capacity. (w/)Overlay considers node capacity
in overlay construction, so that higher capacity nodes
receive more requests and lower capacity nodes receive
fewer requests. Therefore, (w/o)Overlay has a much larger

deviation of the 99th percentile node utilization. This
figure indicates that (w/)Overlay is effective to balance
load among all peers according to their capacities.

6 CONCLUSIONS
In recent years, to enhance file location efficiency in
P2P systems, interest-clustered super-peer networks and
proximity-clustered super-peer networks have been pro-
posed. Although both strategies improve the perfor-
mance of P2P systems, few works cluster peers based on
both peer interest and physical proximity simultaneous-
ly. Moreover, it is harder to realize it in structured P2P
systems due to their strictly defined topologies, although
they have high efficiency of file location than unstruc-
tured P2Ps. In this paper, we introduce a proximity-
aware and interest-clustered P2P file sharing system
(PAIS) based on a structured P2P. It groups peers based
on both interest and proximity by taking advantage of a
hierarchical structure of a structured P2P. PAIS uses an
intelligent file replication algorithm that replicates a file
frequently requested by physically close nodes near their
physical location to enhance the file lookup efficiency. Fi-
nally, PAIS enhances the file searching efficiency among
the proximity-close and common-interest nodes through
a number of approaches. The trace-driven experimental
results on PlanetLab demonstrate the efficiency of PAIS
in comparison with other P2P file sharing systems. It
dramatically reduces the overhead and yields significant
improvements in file location efficiency even in node
dynamism. Also, the experimental results show the ef-
fectiveness of the approaches for improving file search-
ing efficiency among the proximity-close and common-
interest nodes.

ACKNOWLEDGEMENTS
This research was supported in part by U.S. NSF grants
IIS-1354123, CNS-1254006, CNS-1249603, CNS-1049947,
CNS-0917056 and CNS-1025652, Microsoft Research Fac-
ulty Fellowship 8300751, and the United States Depart-
ment of Defense 238866. An early version of this work
was presented in the Proceedings of CCGRID 2009 [56].

REFERENCES

[1] BitTorrent. http://www.bittorrent.com/ [accessed in March
2014].

[2] Gnutella home page. http://www.gnutella.com [accessed in
March 2014].

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A Distributed Anonymous Information Storage and Retrieval
System. In Proc. of the International Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, 2001.

[4] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. TON, 2003.

[5] A. Rowstron and P. Druschel. Pastry: scalable, decentralized
object location and routing for large-scale peer-to-peer systems.
In Proc. of Middleware, 2001.

[6] B. Y. Zhao, L. Huang, and et al. Tapestry: an infrastructure for
fault-tolerant wide-area location and routing. J-SAC, 2004.

[7] H. Shen, C. Xu, and G. Chen. Cycloid: a scalable constant-degree
P2P overlay network. Performance Evaluation, 2006.

[8] Z. Li, G. Xie, and Z. Li. Efficient and scalable consistency
maintenance for heterogeneous peer-to-peer systems. TPDS, 2008.

[9] H. Shen and C.-Z. Xu. Hash-based proximity clustering for
efficient load balancing in heterogeneous dht networks. JPDC,
2008.

[10] FastTrack. http://www.fasttrack.nu/index int.html [accessed in
March 2014].

1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2327033, IEEE Transactions on Parallel and Distributed Systems

14

[11] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
aware overlay construction and server selection. In Proc. of
INFOCOM, 2002.

[12] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay
network. In Proc. of HotNets-I, 2002.

[13] Y. Zhu and H. Shen. An efficient and scalable framework for
content-based publish/subscribe systems. PPNA, 2008.

[14] C. Hang and K. C. Sia. Peer clustering and firework query model.
In Proc. of WWW, 2003.

[15] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer
systems. In Proc. of ICDCS, 2002.

[16] W. Nejdl, W. Siberski, M. Wolpers, and C. Schmnitz. Routing
and clustering in schema-based super peer networks. In Proc. of
IPTPS, 2003.

[17] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu. Data management for peer-to-peer
computing: A vision. In Proc. of WebDB, 2002.

[18] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data
management infrastructure for semantic web applications. In
Proc. of WWW, 2003.

[19] K. Aberer, P. Cudrè-Mauroux, and M. Hauswirth. The chatty web:
Emergent semantics through gossiping. In Proc. of WWW, 2003.

[20] Morpheus. http://www.musiccity.com. [accessed in March 2014].
[21] P. Garbacki, D. H. J. Epema, and M. van Steen. Optimizing Peer

Relationships in a Super-Peer Network. In Proc. of ICDCS, 2007.
[22] B. Mitra, A. K. Dubey, S. Ghose, and N. Ganguly. How do

superpeer networks emerge? In Proc. of INFOCOM, 2010.
[23] Q. Hofstatter, S. Zols, M. Michel, Z. Despotovic, and W. Kellerer.

Chordella - A hierarchical peer-to-peer overlay implementation
for heterogeneous, mobile environments. In Proc. of P2P, 2008.

[24] M. Sachez-Artigaz, P. Garcia-Lopez, and A. F. G. Skarmeta. On
the feasibility of dynamic superpeer ratio maintenance. In Proc.
of P2P, 2008.

[25] H. Liu, J. Thomas, and P. Khethavath. Moving Target with Load
Balancing in P2P Cloud. In Proc. of Cloud, 2013.

[26] P. Garbacki, D. H. J. Epema, and Steen M. V. The Design and
Evaluation of a Self-Organizing Superpeer Network. TC, 2010.

[27] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proc. of ACM SIGCOM-
M, pages 329–350, 2001.

[28] S. Genaud and C. Rattanapoka. Large-scale experiment of co-
allocation strategies for peer-to-peer supercomputing in P2P-MPI.
In Proc. of IPDPS, 2008.

[29] R. Cuevas, N. Laoutais, X. Yang, G. Siganos, and P. Rodriguez.
BitTorrent Locality and Transit Traffic Reduction: When, Why and
at What Cost? TPDS, 2013.

[30] C. Decker, R. Eidenbenz, and R. Wattenhofer. Exploring and
Improving BitTorrent Topologies. In Proc. of P2P, 2013.

[31] Y. Liu, L. Guo, F. Li, and S. Chen. A case study of traffic locality
in Interenet P2P live streaming systems. In Proc. of ICDCS, 2009.

[32] H. Shen and K. Hwang. Locality-preserving clustering and
discover of wide-area grid resources. In Proc. of ICDCS, 2009.

[33] F. Lehrieder, S. Oechsner, T. Hossfeld, Z. Despotovic, W. Kellerer,
and M. Michel. Can P2P-users benefit from locality-awareness?
In Proc. of P2P, 2010.

[34] M. Yang and Y. Yang. An Efficient Hybrid Peer-to-Peer System
for Distributed Data Sharing. TC, 2010.

[35] C. Gross, B. Richerzhagen, D. Stingl, J. Weber, D. Hausheer, and
R. Steinmetz. GeoSwarm: A Multi-Aource Sownload Acheme for
Peer-to-Peer Location-Based Aervices. In Proc. of P2P, 2013.

[36] M.P. Manzillo, L. Ciminiera, G. Marchetto, and F. Risso. CLOSER:
A Collaborative Locality-Aware Overlay SERvice. TPDS, 2012.

[37] G. Ruffo and R. Schifanella. A peer-to-peer recommender system
based on spontaneous affinities. TOIT, (1), 2009.

[38] K. Elkhiyaoui, D. Kato, K. Kunieda, K. Yamada, and P. Michiardi.
A scalable interest-oriented peer-to-peer pub/sub network. In
Proc. of P2P, 2009.

[39] A. Iamnitchi, M. Ripeanu, E. Santos-Neto, and I. Foster. The Small
World of File Sharing. TPDS, 2011.

[40] X. Cheng and J. Liu. NetTube: exploring social networks for peer-
to-peer short video sharing. In Proc. of INFOCOM, 2009.

[41] Z. Li and H. Shen. Social-P2P: Social network-based P2P file
sharing system. In Proc. of ICNP, 2012.

[42] K. C. J. Lin, C. P. Wang, C. F. Chou, and L. Golubchik. Socionet:a
social-based multimedia access system for unstructured p2p net-
works. TPDS, 2010.

[43] Y. Li, L. Shou, and K. L. Tan. CYBER: A Community-Based Search
Engine. In Proc. of P2P, 2008.

[44] F. Liu, Y. Sun, B. Li, B. Li, and X. Zhang. FS2You: Peer-Assisted
Semi-Persistent Online Hosting at a Large Scale. TPDS, 2010.

[45] F. Liu, Y. Sun, B. Li, and B. Li. Quota: Rationing Server Resources
in Peer-Assisted Online Hosting Systems. In Proc. of ICNP, 2009.

[46] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian. Semantic-
Aware Metadata Organization Paradigm in Next-Generation File
Systems. TPDS, 2012.

[47] H. Chen, H. Jin, X. Luo, Y. Liu, T. Gu, K. Chen, and L. M.
Ni. BloomCast: Efficient and Effective Full-Text Retrieval in
Unstructured P2P Networks. TPDS, 2012.

[48] G. Liu, H. Shen, and L. Ward. An Efficient and Trustworthy P2P
and Social Network Integrated File Sharing System. TC, 2014.

[49] BitTorrent User Activity Traces.
http://www.cs.brown.edu/ pavlo/torrent/ [accessed in March
2014].

[50] Z. Xu and et al. Turning heterogeneity into an advantage in
overlay routing. In Proc. of INFOCOM, 2003.

[51] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier. Space
filling curves and their use in geometric data structure. Theoretical
Computer Science, 181(1):3–15, 1997.

[52] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast
hash table lookup using extended bloom filter: an aid to network
processing. In Proc. of SIGCOMM, 2005.

[53] PlanetLab. http://www.planet-lab.org/ [accessed in March 2014].
[54] K. Psounisa, P. M. Fernandezb, B. Prabhakarc, and F. Pa-

padopoulosd. Systems with multiple servers under heavy-tailed
workloads. Performance Evaluation, 2005.

[55] F. A. Haight. Handbook of the Poisson Distribution. New York:
John Wiley & Sons, 1967.

[56] H. Shen. PAIS: A Proximity-aware Interest-clustered P2P File
Sharing System. In Proc. of CCGRID, 2009. Best paper award
nominee, 4/271.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji U-
niversity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Associate Professor in the
Department of Electrical and Computer Engi-
neering at Clemson University. Her research
interests include distributed computer system-
s and computer networks, with an emphasis
on P2P and content delivery networks, mobile
computing, wireless sensor networks, and cloud
computing. She is a Microsoft Faculty Fellow
of 2010, a senior member of the IEEE and a
member of the ACM.

Guoxin Liu received the BS degree in Bei-
Hang University 2006, and the MS degree in
Institute of Software, Chinese Academy of Sci-
ences 2009. He is currently a Ph.D. student
in the Department of Electrical and Computer
Engineering of Clemson University. His research
interests include Peer-to-Peer, CDN and online
social networks.

Lee Ward is a principal member of technical
staff in the scalable systems computing depart-
ment at Sandia National Laboratories. As an
inveterate student of operating systems and file
systems, his interests have provided the oppor-
tunity to make contributions in high performance,
parallel file systems, IO libraries, hierarchical
storage management and compute cluster inte-
gration/management systems.

